...das minhas cousas

 


Midpoint between two points

Be $\overline{P_1P_2}$ defined by $P_1(x_1,y_1)$ and $P_2(x_2,y_2)$

Midpoint $M=(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})$

slope straight line

points $(x_1,y_1)$ and $(x_2,y_2)$

$m=\dfrac{y_2-y_1}{x_2-x_1}$

slope intercept form

$y = mx + b$

find line equation

$y-y_1=m(x-x_1)$

$\dfrac{y-y_1}{y_2-y_1}=\dfrac{x-x_1}{x_2-x_1}$

distance between two points

Using Pythagoras' Theorem: The distance(D) between two points $(x_1, y_1)$ and $(x_2, y_2)$ is given by: $D^2=(y_2-y_1)^2+(x_2-x_1)^2$ so

$D=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}$